Similarity of Families of Matrices An article in CRC Handbook of Linear Algebra
نویسنده
چکیده
2. Simultaneous similarity of tuples of matrices over C. Problem 1 is notoriously difficult. We show that for the local ring H0 this problem reduces to a Problem 2 for certain kind of matrices. We then discuss certain special cases of Problem 2 as simultaneous similarity of tuples of matrices to upper triangular and diagonal matrices. L-property of pairs of matrices, that discussed next, is closely related to simultaneous similarity of pair of matrices to a diagonal pair. The rest of the article is devoted to a “solution” of the Problem 2, by the author, in terms of basic notions of algebraic geometry.
منابع مشابه
Matrices over Integral Domains An article in CRC Handbook of Linear Algebra
In this article we present some results on matrices over integral domains, which extend the well known results for matrices over the fields discussed in §1 of this book. The general theory of linear algebra over commutative rings is extensively studied the the book [McD84]. It is mostly intended for readers with a thorough training in ring theory. The aim of this article is to give a brief surv...
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کامل